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A method for investigating the perturbations of the external field due to a system of local 

inhomogeneities (defects) ln an elastic medium is proposed. The method is based on a 
certain special representation of Green’s tensor for a medium with defects in terms of 

the interaction energy operator which is convenient for describing the asymptotic beha- 
vior of perturbed fields. If the defects are small compared with the distances between 

them this representation makes it possible to construct effective solutions and to find 

expressions for the energy and for the interaction forces between the defects. 

Section 1 introduces the interaction energy operator and deals with the construction 
of the asymptotic representation of Green’s tensor for a homogeneous medium containing 
a single defect. The procedure for calculating the coefficients of the expansion is pre- 
sented in Sect, 2 by way of an example (an ellipsoidal inhomogenei~). Section 3 con- 

cerns the general case of interaction of a defect system. Section 4 contains sample 
calculations for two ellipsoidal lnhomogeneities. An explicit expression for the asymp- 
totic behavior of the interaction energy is derived and special cases considered. 

1. We begin with the general scheme. Let &, be a linear operator associated with a 
known Green’s function G, satisfying certain boundary conditions, namely L,G, = I, 
where 1 is an identity operator. If ~5, is a perturbation of the operator L, such that there 

exists a Green’s function G of the operator L = L, f L,, we can show that G is given 
by the representation G = G, - G,PG, W) 
where the operator P is defined by the expression 

P = L, (L, + L~G~L~)-lL~ 0.2) 
In fact, substituting P into (1.1) and applying L from the left side, we obtain 
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u: = (Lo + L,) [Go - G,L, (L, + L,G,L,)-‘L,G,l = 

= 1 + [I - (L, + L,G,L,) (L, + L,G,L,)-‘IL,G, = I 

Thus, construction of G reduces to finding P from Eq. (1. ‘2) ; this is more convenient 

in the defect problem, since the kernel of the operator L, is localized in a bounded do- 
main which can usually be assumed small. We note that when the operator Li’has mean- 
ing, expression (1.2) can also be written as 

P = (,5,-l + Go)-’ (1.3) 

Now let us consider a homogeneous elastic medium with a single defect. The opera- 
tor L is defined by equations relating the displacement up (X) and the external forces 

9a (X) ’ & w+y+Qp(x)l = -q”(x) (1.4) 
Let us suppose that the tensor of elastic moduli is of the form 

c+y. (X) = CoQB).LL + Ct.=BhP (X) (1.5) 
Here C:shP is the tensor of elastic constants of the homogeneous medium ; c~“’ (z) 

is the perturbation produced by the defect localized in the (small) domain v. The case 

Cr + co corresponds to a rigid inclusion and cr = - CO to a cavity. 

Assuming that the Green’s tensor G,& (x, x’) for the homogeneous medium is known 

and applying the above scheme, we can write the Green’s tensor G.P (X, X’) for the 

defective medium, 
Gab (x, x') = G”aQ (x, 5’) - 

- * Goa&, y)a,,PvaT SF (Y, Y’) &GT”,fi (Y’, x’)dydy’ (1.6) 

Rewritten in operator form this becomes 

G = G” - G”QPQG” (1.7) 
where (as is easy to show) P satisfies the following integral equation in the domain ‘CI’: 

P (z, 5’) - c1 (x) 5 QG” (5, y) VP (y,s’) dy = - c1 (5) 6 (x--z’), x E V, x’ E J” 
V 

(4.8) 

Its solution can be expressed symbolically in a form similar to that of (1. A), 

P = c1 (cl V G” Q c1 - cl)--‘cl = cIQ-‘cl (1 *q 

Q (Y. Y’) = - ~1 (Y) QQ'G" (Y, ~9, (Y’) - ~1 (~)a (y - Y’) 
y E v, y’ E V’ (1.10) 

lf the operator Cr-l nas meaning, then P can be written as 

p = (VG"Q - cl-l)-1 = R-1 (1.11) 

R (y, y’) = - QQ’G” (y, y’) - cl-’ (Y) 6 (Y - Y’), y E v, Y’ E V’ (1.12) 

It is clear that the operator P is selfadjofnt and that its kernel satisfies the symmetry 

conditions PE”ar(y, y’) = P”hOT(y, y’) = POih”(Y’, y) (1.13) 

and is concentrated in the (snlall) domain T/’ X v’. 
The solution of Eqs. (1.4) now becomes 

u, (X) = ua” (X) - 5 GL (X, Y) &Payas ty, y’) &(y’) dydy’ (1.14) 
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where u”, (z) and E~P (z) are the displacement and strain in the defect-free medium. 

The operator P also enables us to write the expression for U. (z) in explicit form pro- 

vided the forces and moments acting on the defect are given. 
The energy of interaction between the defect and the external field 8.8 (2) turns out 

to be 
(1.15) 

which means that 1’ can be regarded as the operator of the energy of interaction between 

the defect and the external field. 

In some problems (e.g. in the case where a local inhomogeneity models a vacancy 
or a foreign atom in the crystal) it is interesting to determine the force acting on the 

defect fl]. This force can be found by assuming that the defect is capable of transla- 
tional motion through the medium. The kernel of the operator P and therefore the inter- 

action energy CI, then depend on the coordinates xi of the center of mass of the defect, 

and the force acting on the defect is given by 

The same method can be used to find the resultant moment exerted on the defect by 

the external field. 
In general the kernel Paiap (y, y’) of the interaction energy operator can be found 

numerically. This is facilitated by the fact that unlike Gap (x, x') , the kernel 

pafihp (y, y’) is concentrated in a bounded domain. 

The problem becomes much simpler (and in some cases solvable analytically) if we 
are interested merely in the asymptotic behavior of the perturbed field. This is equiva- 

lent to the assumption that the defect is small compared with the distances from the 
defect, or(which is the same thing) to the approximation of P !>y the first terms of the 

expansion in multipoles. 
The expansion of P in a multipole series at the point x,, is of the form (1.17) 

PaB@ (y, y’) = 2 (- l),~,Paph~~l..~Am~~.~~*~ &,A,...hm (y - x0) 6,p,...pn (y’ - x0) 
mn 

P aP?+A,...A,p,. ..Lr, 1 - 
mlnl ss 

P”f+(y + x,,, y’ + x0) y"t . . . yirny’~l. . . y”“dydy’ 

which can be abbreviated as 

P(Y, Y’) = Z(- v’“L%n)(Y --s%,(Y’ - %tD) (1.18) 
m ?L 

Substituting this expansion into (1.Q we eventually arrive at a linear system of equa- 

tions for determining the coefficients P,,. 
Expression (1.14)implies that to obtain the asymptotics of uIL Ix) of order 1 x - sol-’ 

we must retain terms up to the order m + n = I - 2 , inclusively, in expansion 
(1.17). In the zero-th approximation we are left with one term with the coefficient 

P ,,o. It can be shown that this approximation corresponds to the model of a point defect 
in an elastic quasicontinuum considered in p]. 

In the case of a homogeneous external field t:P = const the energy of defect-field 
interaction is given by the exact formula 
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a, = l/f qag Pop&P 6x** (1.19) 
which makes possible a physical interpretation of Pea. 

As we shall show, the asymptotic behavior of the solution for a defective system can 
be constructed provided the first coefficients I’,,,, for each defect are known. 

2, Let us consider in more detail the independently interesting case of an ellipsoidal 
aniso~opi~ ~homogene~~ in an infinite isotropic homogeneous medium. Let 

cl=fi+ (z) = cr=@Ap V (5) (2.1) 

where craaaP is a constant tensor and V (2) is the characteristic function of the ellip- 
soid de&red by the cauonicaf equation 

It can be shown that the system of equations for Pntn breaks down in this case into 
inde~ndent equations for each of the coefficients P,, and I),,, The remaining coef- 

ficients are related by recursion formulas. Thus. the expressions for the coefficients are 
obtainable in closed form (in quadratures). 

From now on we shall confine our attention to the principal terms of the asymptotics 
of the ~rt~bed fields, which will enable us to limit ourselves to the explicit expression 
for the coefficient PO,,. Omitting the cumbersome intervening expressions, we state the 
finaX result p,e = - @$ (El i- C&Q-L, = - U (cl-1 + A)--’ (2.3) 
where B is the volume of the ellipsoid and A is a constant tensor with the symmetry of 

PBh@ over its indices ; this tensor depends on the geometric characteristics of the eilip- 

soid, theshear modulus b, and the Poisson’s ratio y,of the exrernal medium. We infer 

from this that .4 must have ellipsoidal symmetry and be defined by nine essential com- 
ponents. In the chosen coordinate system attached to the principal axes of the ellipsoid 

we have 
A 1111 =x0 [31,, + (1---4~~)l~1, A,,,, = xi, II,, - f,l (2.4) 

A MS& = ~/g%~ II',, + f,, + w--2qJ (11 + I,)* xi3 = '/lS h%b v---v,rl 

can be expressed in terms of elliptic integrals. 

The rerna~~g six nonzero ~om~nents of the tensor Aeeap are obtainable from (2.4) 
by cyclic permutation of the indices 2, 2, 3. 

The resulting expression for P,, enables us to use relation (1.14) to obtain the priu- 
cipaf. term of the asymptotic expression for the perturbed field in an arbitrary external 

field, As already noted, expression (1.19) is exact for a homogeneous external field, 
and the asymptotic behavior of the perturbed field in the particular case of isotropic 
ellipsoidal inhomogeneity coincides with the asymptotic expression previously obtained 
by a different method by Eshelby @IS 

5. Now tet us consider a homogeneous elastic medium containing a system of defects, 
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The operator L is defined by Eq. (1. A) as before, but the tensor of elastic moduli is of 
the form 

(3-l 1 

where ciaakP (5) is the perturbation produced by a defect localized in the(smal1) do- 

main V,. 
It is clear that the Green’s tensor Gae (z, z') for a medium containing a defect sys- 

tem is of the form (1.6). However, in contrast to the case of a single defect the inter- 

action energy operator is given by the operator sum 

p = x:pU (3.2) 
ii 

where ?“j has a kernel concentrated in the domain Vi X V,' and is expressible in a 

form similar to that of (1.9). 

Pij = ci (c~VG”VC, - c~~~~)-~c/ = (VGT - ci-‘~il)-’ = R,,-l (3.3) 

R,j (?A Y') = - VV'G" (!I, Y') - ci-l w b - El')b 

YEV+ y’ E V,’ (3.4) 

We see from this that the operator P is selfadjoint and that its kernel satisfies sym- 

metry conditions (1.13) and is concentrated in the domain U. Vi X vi. 

Expressions (1.14) and (1.15) are valid for the displacem%t due to defects and for 
the interaction energy ; the force exerted on the kth defect by the external field and by 

the external defects can be determined from formula (1.16). where s,,” must be replaced 

by the coordlnateszraof the center of mass of the k.th defect. 

The components of the matrix Pij depend on the distances ‘TV = 1 xi - zj 1 between 

defects. Let us consider the case where the distances between defects are large compared 

with the sizes of the defects and find the principal term of the expansion of the matrix 

Pij in distances. In the zero-th approximation the defects do not interact and Pij = 
= Pi&j, where Pi is the operator of the i th defect. It can be shown that the problem 

reduces to paired interactions in the first approximation. It is therefore sufficient to 
consider the case of two defects. 

In this case Pij is a second-order matrix and according to (3.3) we have 

4, = II (PI)-1 vG”v 

vG*v (Pa)-' II 
(i,i = i,2) (3.5) 

It can be verified directly that the operator components P*j are given by the formulas 

(no summation t ) 

Pii = (Rii-II(ijRjj-'Rj,)-', Pi' = (Rji - RjjRij-'Ri<)-' (i#t13 (3.6) 

Retaining the principal terms in rrs = 1 Z, - x, 1 in these expressions, we obtain 

P' 
pii = 

-PP'~GovPa 
-PP2vG"vP' Pa + O(r;i) (3.7) 

i.e. the principal term in rrz of the matrix Pi3 can be expressed explicitly in terms 
of the operators Pi of the individual defects. 
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If. as in the case of a single defect, we are interested only in the asymptotics of the 

perturbed field and in the defect interaction energy, we can approximate the kernel 
1’ (y, y’) by the first terms of its expansion in multipoles in the neighborhood of each 
defect, (3.8) 

mn ij 

It is important to note that the principal terms in fil of the first coefficients of the 

expansion are obtainable in explicit form provided the first coefficients P,, for each 

defect in the absence of other defects are known. 

In the case of a homogeneous external field the energy of interaction between the 

defects and the external field is given by the formula 

CD = 1/S e”POO ( r12) E’, - P,, (r12) = x wj (r12) (3.9) 

which is exact for any r12 . 
ij 

It follows fIom this that the asymptotic expression of the matrix Po,,<j (r12) is the 

sole contributor to the principal term of the asymptotic expression of Q in rrs in a 

homogeneous field. In the case of an arbitrary external field it is also necessary to take 
into account the contributions made to the asymptotic expression of @ by the asymto- 
tics of the diagonal components of the matrices Por’j (rrs) and P,,,” (rta). This con- 
tribution is equal to zero if the defects have central symmetry or if the external field 
varies slowly at distances on the order of defect sizes. 

4. To illustrate our method let us find the principal term of the asymptotic expression 

of the interaction energy Q, of two ellipsoidal inhomogeneities in an unbounded elastic 

medium. 
The principal term Pod of the expansion of the kernel of the operator P* for each 

ellipsoid considered as an isolated defect is known, 
P,i = - vi ( Ai + q-l)-’ (4.1) 

The tensors Ai have structure (2.4) in the coordinate systems attached to the ellipsoids. 

Recalling (3.7). we can obtain the components of the matrix 

P$ (rip) = II Ptii P; vv Go (xl - 4 Pi 
PO”0 vv G” (~9 - 21) Ph Poi II 

(4.2) 

in the approximation under consideration. 
As already noted the matrices Pst’j and Ploij need not be considered by virtue of 

the central symmetry of the ellipsoids. 

Substituting P oo'j (r12) into (3.9), we obtain 

@ = a; + CD; + 0D,r12-9 + 0 (r12-0 (4.3) 

CD; = 11~ E"P:, e", @lr12-3 = e”P d vvG” (xi - x#‘$ E* (4.4) 

Here @si is the intrinsic energy of the i th defect and @,ris a quadratic function of 

the external field which also depends on the elastic constants of the medium and on the 
defect parameters. 

Let us write out the explicit expressions for 0: and a, for the case where the exter- 

nal field is purely dilatational, 
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8:P = 8&xfi (4.5) 
and where the inclusions take the form of two spheroids with the common axis of rotation 

C? and isotropic elastic constants, 

(4.6) 

(4.7) 

Here the index i is the number of the defect and the subscript in the quantities psi 

denotes the principal axes of the ellipsoids (assuming only the values 1, 2 by virtue of 

rotational symmetry). 
The limiting case of a rigid inclusion results if we let J.$ + 00 in (4.8) ; the case 

of a cavity results if we set & = - &J, Yi = VW 
If one of the ellipsoids (e. g. the second one) is a sphere, then psa = 0 and the expres- 

sion for Cp, becomes much simpler, 
-lz’--I’ 

cf, 1= 3~[1+3~~~~] -y (1 -a,) (4.9) 

If both ellipsoids are spheres, then J.$’ =psg = 0 and 4t = 0. This agrees with the 

familiar result of [3] whereby the interaction energy for isotropic spherical inclusions is 
-e mr . 
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